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When a film of liquid runs down a vertical wall and enters a large pool a number 
of stationary horizontal ripples are observed on the film just above the point of entry. 
These ripples are explained and analysed by the method of matched expansions and 
the results have a bearing on more-complicated problems. Next the case when the 
wall itself is moving vertically downwards is analysed. This is of interest in roll-coating 
technology, where it is normally desired to achieve smooth entry of the descending 
film, without air entrainment. The paper gives sufficient conditions for smooth entry, 
and these are consistent with known experimental results. 

1. Introduction 
Suppose a thin liquid film of uniform thickness flows down a vertical wall and enters 

a large pool. The free surface does not simply turn through a right-angled bend but 
exhibits several horizontal ripples near the point of entry (see figure 1) .  These ripples 
have been described by Cook & Clarke (1973) and by Cullen & Davidson (1957), for 
example. The explanation, in terms of the interplay between gravity, friction and 
capillarity, was given in essence by Ruschak (1978), and will be amplified somewhat 
below. 

However Ruschak gave only numerical solutions of the ordinary differential 
equation for the film thickness, and, although he gave an estimate for the film 
thickness just before entry into the pool which is asymptotically correct (in a certain 
limit to be explained later), the explanation is not absolutely clear and he was not 
able to use this to construct an asymptotic solution of the differential equation. 

It seems worthwhile to  pursue this problem further. To begin with, this homely 
piece of fluid mechanics is interesting in its own right; but it seems furthermore to  
be the simplest manifestation of a problem in matched expansions which is a t  the 
root of difficulties encountered elsewhere when a thin film with a free surface 
approaches a stagnant or hydrostatic region (Bretherton 1961 ; Jones & Wilson 1978). 
We therefore give below the solution of Ruschak’s problem by matched expansions. 

We also consider a natural extension of this problem in which the wall itself is 
moving vertically downwards. The case of motion vertically upwards amounts to  the 
drag-out problem (Wilson 1982), in which the film thickness a t  large heights above 
the pool is to be determined. In  the present case the thickness can be specified 
independently of the velocity of the wall so that a two-parameter problem emerges. 
The flow arises in connection with roll-coating processes. Here a roller is arranged, 
with its axis horizontal, half-submerged in a bath of liquid and caused to rotate. The 
amount of liquid picked up is given by the solution of the drag-out problem. Some 
of this liquid is removed and the remainder re-enters the bath in the manner to  be 
analysed here. In some cases a smooth entry is observed, but in others the free surface 
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of the pool dips and air may be entrained. Experiments on these lines have been 
reported by Bolton & Middleman (1980) and by Wilkinson (1975). Although we shall 
not obtain here any solutions of the differential equations corresponding to air 
entrainment (they all exhibit smooth entry), some useful conclusions can nonetheless 
be drawn. 

2. Equations of motion 
Making the usual approximations of lubrication theory, and referring to figure 1, 

we have 

u = U  on i j = O ,  

Here T is the surface tension, assumed constant, and K, the free-surface curvature, 
is related to 6 by - K = 6zz(l +6$)-8. It is necessary to prescribe the film thickness 
a t  5 = - 03, say h = h,; the surface is assumed to be free of waves sufficiently far 
above the pool. 

It is a simple matter to derive a differential equation for @(x) ; we use ( 2 )  and (3)  
to calculate the pressure gradient term in (1) in terms of K ,  and hence of h, and then 
integrate ( 1 )  three times with respect to  Cj to obtain the flux down the wall. This 
quantity is, of course, a constant, and further must have the value Uho+pgh;/3p 
(volume per unit time per unit length of wall) given the earlier assumption that the 
film has a uniform thickness at large distances from the pool. A convenient 
dimensionless version of the final equation is 

(b3L{ (bxx } = 1-(b3+3a3(1-(b). 
ax ( 1  +€2#;)% 

(4) 

As a preliminary to  explaining this equation we note that three lengthscales occur 
naturally, namely h, and two others denoted D and d and given by 

Now D is the lengthscale of the hydrostatic meniscus, and d is the order of 
magnitude of film thickness a t  which the motion of the wall and the force due to 
gravity produce comparable velocities in the film. 

I n  (4) we have 

where the first of 
given by 

these is forced, and the scale for X, namely 1,  is yet another length 
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FIGURE 1.  Sketch of coordinate system. A denotes the final wave trough 

and is determined by matching up the surface-tension and gravity terms in (4). The 
two dimensionless parameters c and are defined by 

The analysis will proceed throughout on the assumption that e is small. Indeed, 
this statcement has already been used implicitly when writing down the original 
equations, since the inequality h, < D is the basis of the boundary-layer approxim- 
ation. This allows us to discard such terms as a2u /d2  from ( l ) ,  this term being smaller 
than a2u/ag by c2. It will be noted, however, that  one term O(c2)  has been retained 
in our basic equation, (4). This is because this term cannot be uniformly neglected 
in the problem. I n  the meniscus region, where the film meets the pool, q5z takes values 
O(s- l ) ,  forcing us to retain this term in our equation. Conversely, it is easy to verify 
a posteriori that the terms that we have omitted are relatively small in all regions 
of the flow. 

We shall try to allow as general a range as possible for cr. However, there is another 
basic restriction embodied in the approximations that produced (3) .  If the viscous 
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stresses a t  the free surface are to be small in comparison with surface tension, then 
the capillary number V must be small. This is given by 

and so CT cannot be allowed to be as large as 6-l. 

A similar analysis has been carried out by Wilson (1982) for the drag-out problem. 
The scalings here are different and have been determined so that the motion of the 
wall, measured relative to gravity (as it were) by the parameter u, can be conveniently 
thought of as a perturbation of the entry problem considered by Ruschak (1978), for 
which u = 0, of course. (This perturbation need not in fact be ‘small’.) 

To complete the determination of the appropriate solution of (4) we have the 
condition $ + l  as x+--co, 

and also the requirement that  the solution must mcrge somehow into a hydrostatic 
meniscus. How this can be accomplished is in fact the technical point of the paper 
and will be considered in detail in $03 and 4. 

3. Fixed wall 

for small E and omit the term in 8 from (4), then the equation becomes 
When the wall is fixed CT takes the value zero. If we also follow the natural procedure 

a form that was considered by Jones & Wilson (1978). There are solutions that satisfy 
the boundary condition $ --+ 1 as x --+ - CO, but there is no simple way of matching 
them forward into the meniscus region. To show the problem we need to describe the 
nature of these solutions in more detail. At large negative x, I$ approaches unity, with 
the asymptotic difference between $ and unity being a harmonic oscillation with 
amplitude that decays exponentially. This oscillation grows in the positive direction 
until its amplitude is comparable to unity, whereupon i t  loses its harmonic character 
and develops into a nonlinear oscillation which dominates the solution. These 
oscillations are better described as a series of ever-increasing ’leaps ’ ; a leap consisting 
of a long region in which $ takes large values and the gradient changes slowly from 
positive to negative, followed by a short region in which $ is less than unity and the 
gradient changes rapidly from negative to positive. I n  the region where $ is large, 
(10) is approximately $,xz = - 1 ,  so that, for a leap starting from near zero a t  x = xn, 

$ z -Q(x-xn)3 +a(x-xn)2 + b(x-z,). 

In  a typical leap the gradients are large at the start, so that the coefficients a and 
b are large. Eventually, however, the cubic term must dominate and the solution will 
be brought back to nearly zero, but now with negative curvature and gradient. 
However, once $ becomes small, (10) is approximately $,,, = 1/$3, so that the rate 
of change of curvature is large and positive. In  fact the term on the right-hand side 
is sufficiently strong to prevent $ ever reaching zero, and to reverse the signs of the 
curvature and gradient over a very short region. Further, it amplifies the magnitude 
of these quantities so that the next leap is started with even larger values of a and 
b. The result is that  $ attains even greater values than before, and takes yet longer 
before it is brought back towards small values again. 
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Now to match into the meniscus region q5 must increase formally by an order of 
magnitude; namely, as we show presently, e-s. Since we are considering the limit 
E -+ 0 this means that 4 must increase by an indefinitely large amount. However, such 
an increase is not possible over a finite region. Equation (10) is not singular a t  all, 
and so, if we imagine integrating forward from some finite starting value of 9, the 
final value reached, however amplified by the nonlinear oscillations between, is still 
finite and must therefore be formally considered as still being of order unity. Thus 
to achieve an indefinitely large increase in q5 it is necessary for the solution to first 
undergo an indefinitely large number of nonlinear leaps. 

This conclusion is a t  first hard to accept since i t  seems to contradict both 
experiment and the numerical solutions with fixed small e given by Ruschak (1978), 
which show not an oscillatory approach to infinity but a monotonic approach after 
only one or two nonlinear oscillations. The first of these features, the monotonic 
behaviour, is easy to reconcile. Suppose that we have already traversed a formally 
infinite number of oscillations so that 4 has already reached an asymptotically large 
value. Then, if we integrate forward one further step from one crest to the next, our 
starting conditions must be expressed as a suitable function of e that  reflects the 
asymptotic value already achieved. The fact that the parameter e now appears in 
the basic formulation of this problem means that there is now the possibilit,y that 
the solution becomes asymptotically amplified as the trough is traversed, and this 
is, in fact, what happens. There is, then, a$nal trough, denoted by A in figure 1,  
across which 9 increases in order of magnitude to  reach the desired total order of 
magnitude change of e-t. After this change the solution can then depart uniformly 
to infinity. 

Two things remain: we must verify the above description by constructing an  
asymptotic solution which has these features, and then we must show why a large 
number of nonlinear oscillations are not observed in practice. We begin the 
construction by examining the final trough. A new scale is necessary for 4, which in 
this region is small in terms of E .  Also, to  achieve a balance in the equation the 
coordinate x must be rescaled. We therefore introduce new variables into (4) to 
describe the surface near A ,  namely 1, and X, ,  where 

and a and p are small parameters to be determined. (It may be helpful a t  this point 
to refer to figure 2, where the asymptotic structure of the various regions near A is 
sketched. The orders of magnitude indicated there are to be established in the analysis 
that  now follows.) To balance the equation we require 

so that the equation itself reduces to 

I n  order that the matchings of this trough region to the regions on either side of i t  
produce an overall order of magnitude increase in the positive X ,  direction, the 
solution must have different coordinate behaviour a t  plus and minus infinity, 
increasing more rapidly as X ,  -+ + co than as X ,  + - co . Since the solution for $, large 
is either quadratic or linear in XI, we clearly require that = O ( X f )  as X ,  -+ + 00 

but that  = O(X, )  as X ,  --f - 00. The constants a and p are now determined by the 
requirement that this solution can be matched forward into the meniscus region. In  
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FIGURE 2. Asymptotic structure of the solution near the final wave trough A indicated schematically. 
The lengthscales are in terms of the basic order-unity variables x and 4 .  

that  region the correct scales for both h and 5 are well known, both being equal to  
D, so, if we denote the corresponding dimensionless variables by CD and X, then we 
must have - 

With these scalings @ satisfies the hydrostatic equation 

to leading order in E .  This static meniscus must approach the vertical wall with 
apparent contact angle zero to  give the required quadratic behaviour near the wall, 
as in the drag-out problem. Solving this outer problem we find, in fact, that  

CD - X212.t as X -, 0. (16) 

For the scalings (1  1 )  and (14) to  be compatible with these quadratic forms for I,+, 
and CD i t  is necessary that 

pz = a&, (17) 

and combining this with (12) we can now determine the trough scalings to be 

(18) 

The value of a was actually predicted by Ruschak. He examined a sequence of curves 
computed numerically with different values of e,  and by assuming that the minimum 
of the troughs had a power-law behaviour was able to evaluate the missing exponent. 
However, he was not able to fit this result into any comprehensive scheme. 

With these values for 01 and p, the forward matching reduces to the boundary 
condition $, - X:/2? as X, --+ CQ, and, with the additional condition I,+1 - - a x ,  as 
X ,  -, - co, the solution of (13) is fully determined. The numerical solution given by 

p = Q, a = €10. 2 
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Jones & Wilson (1978) can be used to determine the constant a and the minimum 
value of k1. We have, in fact, a x 1.03, 

$,(min) z 1.14, 

and this minimum value is in good agreement with Ruschak’s (1978) numerical 
results. (Some care is necessary when making the comparison because the scalings 
are different. The agreement was perfect to within the accuracy that figures can be 
read off such a small graph.) 

Next we must explain how the solution for $1 can be matched upstream into a 
solution of (10). The equation for @,, when the small terms are restored, is 

As we leave the neighbourhood of A in the upstream direction (i.e. as X ,  -+ - 00)  the 
solution grows linearly, as noted, and will continue to do so until the small term on 
the right-hand side of (19) enters and turns i t  round. It is easy to verify that this 
turn around has not been achieved by the time $l is O ( d ) ,  i.e. when q5 is O(1). Thus, 
as has been remarked already, i t  is not possible for a direct match to be achieved 
between and (10). Instead, the solution will overshoot order-unity values and thus 
enter a region where i t  is asymptotically large, although not as large as it was in the 
meniscus region. I n  this region the solution has the same behaviour as a crest of the 
nonlinear ‘leaps ’ described earlier. Following it in the negative 2-direction, the 
solution will increase to a maximum value and then decrease towards zero. When i t  
becomes sufficiently small, i t  enters a trough region where it becomes turned around 
once more and is directed outwards towards yet another crest, whereupon the pattern 
repeats itself. I n  passing through this second trough, and indeed through all 
subsequent troughs, i t  undergoes a further reduction in its order of magnitude. 
However, the sequence of these reductions is such that values formally of order unity 
can never actually be reached, so that an infinite series of troughs and crests must 
be traversed before the solution of (10) can be approached. 

To demonstrate this progress of events we shall describe the first crest and its 
subsequent trough in detail, and then infer the continuation. We must introduce 
freshly scaled variables for the crest region, so we introduce a small parameter A,  to 
be determined, and put 

81 = A$,, t1 = AX,, (20) 

since the linear behaviour of $l implies that  the same parameter must occur in both 
equations. The required balance in (19) is then achieved with the choice h = 8, and . .  
the equation satisfied by 8, is ,,, 

8, = -1 :  

to leading order. When 8, is order unity, q5 is O ( E - ~ ) ,  and because this is formally 
infinite i t  is not possible to match directly with the ultimate upstream condition 
C#J = 1. Instead the solution will reach a maximum and return to small values, thus 
entering the second trough region. This region is very similar to the trough a t  A ,  and 
it can be verified a posteriori that  its governing equation has the same form as (13). 
I n  that case, if the solution is to  undergo the desired reduction in magnitude as it 
passes through the trough, it must match into the crest on its positive side with 
quadratic behaviour, and into the crest on its negative side with linear behaviour. 
Then the analysis will be analogous to  that of (13): where an order-of-magnitude 
reduction was also found. 
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The quadratic matching requirement places a condition on the function el, namely 
that i t  must have a double zero a t  some unknown value of gl, c1 = to say. The 
matching condition with the trough a t  A provides the additional conditions 

6,  = 0, 0; = - a  a t  6, = 0, (22) 

where we have also used this condition to  define the otherwise arbitrary origin of 
All these conditions make 8, fully determinate and i t  can be calculated that i t  takes 
a maximum value of (&"it while to turns out to  be -(6a)i. 

With the crest region solved we can move on to the second trough. If $, and X, 
are appropriate O(1) variables in this region then we must introduce the parameter 
y ,  to be determined, and put 

$2 = y28,, x, = y(cl-go)> 

since these relations allow quadratic matching between the functions $, and 6,. To 
balance terms in our basic equation we must then choose y = e - h ,  whereupon (13) 
is obtained, except that  the subscripts are different. Completing the details of the 
matching then yields the conditions 

$, = O(X,)  as X ,  +- co, 

and these make the function $, fully determinate, except for an arbitrary origin shift. 
The solution can be found numerically if required. 

The important feature to  concentrate attention on here, however, is the order-of- 
magnitude changes that have occurred. The value y = E - &  corresponds to 4 being 
O(&) in this trough region, as compared with being O(&) near A .  And if we were 
to continue our analysis to  the infinite series of troughs and crests extending upstream 
from A we would find that the nth trough (counting A as n = 1) is always small, with 
6 oforder &3/ lon ,  while the nth crest is always large with 4 of order E - ~ / ~ , ~ ~ ~ .  However, 
although these numbers are always formally infinitesimal or infinite respectively, this 
is a very rapidly changing sequence, and for any reasonable value of E they are all 
(except for the first) as near unity as makes no practical difference. For instance, with 
the impossibly small value E = (with D = 1 cm this value would require h, to 
be less than an atomic diameter), & x 016 and EA z 0.66. Thus, heuristically, the 
infinite wave train flattens itself out and becomes order one after only one or two 
oscillations. This is why only one or two waves are seen in the experiments and in 
the numerical work. 

Finally, we outline briefly the physical explanation of the waves. At any point 
where the free surface is concave to the wall, the pressure is reduced by surface 
tension, and the fluid there will be moving somewhat faster than immediately 
upstream because of the pressure-gradient force. By continuity the film must 
therefore be thinner. Thus a t  points whcre the free surface is concave to the wall the 
film is thinner than average, and similarly where it is convex it is thicker, producing 
a wavy effect. Nevertheless, the free surface can tend to infinity (in these coordinates) 
and merge with the horizontal free surface of the pool. This happens when the 
gradient becomes so large that the curvature can no longer be approximated 
adequately by the second derivative. We can see from (15) that the surface can have 
constant negative rate of change of curvature, but never reach a maximum and turn 
round. 
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4. Moving wall 
We now turn to the various possibilities that arise when u > 0. It is convenient 

to imagine that u has some definite order of magnitude in terms of 6 ,  say B = e-k. 
Now it is easy to see that, if u is order 1 ,  that is k = 0, the analysis of 8 3 goes through 
with only trivial changes to the algebra, and if u is small, i.e. k < 0, we have a trivial 
regular perturbation. We may therefore confine our attention to the cases when u 
is large. In  view of (9) we need, or may, only consider the range 0 < Ic < 1 .  

When u is formally large it is necessary first to rescale x: in (4). We put 

2 = 3+ux: 
and then (4) becomes 

So the first task is to  consider the first approximation to  (23), namely 

1 1  Q,’,, = - - - 
Q,3 P’  (24) 

This can be made to satisfy the condition Q, + 1 as P + - 03, and a t  - 00 we have 
the asymptotic form 

4 - l+Cexp(+2)cos(+1/32) .... (25) 

Here the free choice of origin of 2 has been used to eliminate a solution with the 
opposite phase. Meanwhile, a t  + 00 we have 

4 - BP2. (26) 

Numerical integrations indicate that any positive value of B can be made to occur 
by a suitable choice of the constant C. The relation between them is sketched in figure 
3. Note that in view of (25) i t  is necessary only to consider a range of C such as 
(C, Cexp ( - 2  1 / g  T ) ) ,  because outside this we get the same solutions starting at a 
different place. The range of G shown in the figure arose because the integrations were 
started at  2 = 0. (Further terms in the expansion (25) were incorporated into the 
numerical work to improve the accuracy.) The values that are actually required will 
emerge from the process of matching (26) to the meniscus, and we turn now to this 
question. 

On examination of (23) we see that when Q, and 4’ become large there are two 
possible non-uniformities, according to which of the small terms (in the curvature, 
on the left, or in the gravitational term, on the right) enters first. A special case is 
distinguished, when these small terms enter simultaneously, which divides two 
asymptotically different regimes, and it is convenient to consider this first. We put 

$=a+,  z = P ~ ,  (27) 

where a and p are small parameters to be determined. We are supposing that the 
constant B in (26) is a fixed order-unity number for the present, although this will 
be relaxed later. I n  view of this quadratic growth i t  will be necessary, if Q, and $ are 
to match. that a = p. 
For the two small terms in (23) to increase to order unity under the transformation 
(27) we must have 

a a4 u3a3’ (29) 
= I ,  IT--.- 1 * - 



228 

100 

S. D. R. Wilson and A .  P. Jones 

0 0.1 0.2 0.3 0.4 C 

FIGURE 3. Relation between the constants B and C of (25) and (26). B appears to vanish when 
C = 00120, approximately, and tends to infinity a t  C = 0.451, approximately, the ratio of these 
two values being about exp ( -  22/47r), as explained in the text. The integrations were troublesome 
for large values of B and no great effort was made to obtain very accurate results. 

and the solution of (28) and (29) is 

a = &, p = $, 0- = e-4. (30) 

Now we can see easily that the scales for h and x have increased to D, so that 6 can 
be identified with CD and 2 with X, defined in (14), and the static meniscus region 
has been reached. We may put 

where p is a fixed order-unity constant, and replace (27) by 

u = p € d ,  

@ = $6, x = 3-4p-1eip. (31) 

Here the factor 3-4p-l has been inserted so as to  give the correct meniscus equation, 
(15), free of extraneous factors ofp,  when (23) is transformed. Finally, matching (26) 
and (16) gives 

which fixes B, and hence C ,  and thus the complete solution. 
The case just considered corresponds to k ,= $, and we now turn to the range 

0 < k < 4. An examination of (23) shows that as 6 increases according to (26) the 

Bp2 = 2-#3-%, (32) 
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gravitational term # 3 / ~ 3  on the right enters before the small term &?#'2 in the 
curvature. The equation satisfied by 6 now takes the form 

p=-,  (33) 

to leading order, so the solution turns round and returns to small values (rather like 
the function of $3) .  The solution can only escape to infinity to match with the 
static meniscus if it first takes on formally small values, again as in $3. Repeating 
that analysis we make the transformation ( l l ) ,  and we obtain (12) and (13), but (17)  
is replaced by 

and the solution is 
p 2  = a€&?, (34) 

(35) 
2 4  a = I&% , p = e5u5. 

We see that the order of magnitude of 4, which is a,  increases from 8, when v 
is order unity, to order unity when CT is order €-a. This means that waves diminish 
in amplitude as g increases. 

Finally we consider the range t < k < 1 .  Now we have to abandon the idea that 
the constant B in (26) is order unity which leads to a matching problem with no 
solution. (Briefly, we should find that the small curvature term in (23) enters before 
the gravitational term, and as a consequence the surface would have to have constant 
curvature, i.e. be an arc of a circle. This cannot match to a static meniscus.) The 
correct form of the solution can be deduced simply by letting p tend to  infinity in 
the analysis given earlier. Then we see from (32) that the constant B must be small, 
and in fact by arguments exactly similar to  those leading to (32) we can show that 

B = 3-' 32 z g  -' e -' 2 .  (36) 

5.  Concluding remarks 
The fixed-wall case has been analysed by the method of matched expansions, and 

it turns out that an infinite number of overlapping regions is necessary, each of which 
contains a crest and a trough. The asymptotic sequence given by the successive film 
thickness in the troughs (c3/10n, n = 1,2,  ...) is so feeble, however, that  the terms are 
essentially unity after the first one or two, and the same applies to the crest heights. 

The moving-wall case has been similarly analysed for the regime CT - ck, 
0 < k < 1.  I n  the range 0 < k < the behaviour is similar to the fixed-wall case, with 
an infinite number of regions being necessary. As k increases, the waves diminish in 
amplitude, reaching order unity when k =t ,  and also diminish in length (the 
wavelength is of order l/c). These trends continue without qualitative change as k 
increases in the range 4 < k < 1 .  As k approaches 1 ,  the approximations implicit in 
the basic equations (1)-(3) fail. First, the neglect of the viscous stress term in the 
last equation of (3) (which is of order $? = cr3e3 relative to the others) is no longer 
justified.? Secondly, the wavelength l / g  approaches 1s = ha, so that the neglect of 
x-derivatives in the viscous-stress term in ( 1 )  is no longer justified. 

Within the limits explained, solutions have been obtained corresponding to smooth 
entry of the film into the pool. It must be admitted that the analysis was begun in 
the hope that the matching process would fail somehow (while the approximations 
remained valid) in a way which could have been interpreted as implying the onset 
of air entrainment. Nonetheless the results are of some use, because i t  is normally 

t When = 0 this term is of relative order 2 
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desired to avoid air entrainment, and the present analysis gives sufficient conditions 
for this, namely E 6 1 and ue 4 1 .  

These conclusions are supported by the (admittedly sparse) experimental observa- 
tions. Wilkinson (1975) gives the values of $9 a t  the onset of entrainment and these 
are all order unity (violating the condition $9 4 1) .  There is not enough raw data to 
calculate e but it was probably small. Bolton & Middleman also report the values 
of V a t  the onset of entrainment and most of these are in the range 1 < $9 < 10. Some 
are considerably smaller, but the evidence suggests that  inertial effects were 
important in these cases - inertial effects, have, of course, been neglected throughout 
this paper. It seems likely that, when entrainment occurred and inertial effects were 
negligible, both u and E were of order unity. 
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